Tag: ARTICLE
Bluetooth is short-range wireless communications technology based on the IEEE 802.15.1 protocol. It works in a crowded license free 2.4 GHz frequency band and shares this resource with many other technologies.
Bluetooth is the optimal solution for establishing small wireless networks called Piconets, by connecting two Bluetooth devices. One of these nodes is Master that can be connected via Bluetooth link to 7 other Bluetooth devices—Slave nodes in Personal Area Network (PAN). Typical data rates are 1-3 Mbps.
The newest versions of Bluetooth is known as Bluetooth Low Energy (BLE) or Bluetooth smart.
It is important to note that Bluetooth and BLE...
Zigbee technology introduction
Zigbee is wireless PAN (Personal Area Network) technology developed to support automation, machine-to-machine communication, remote control and monitoring of IoT devices. It evolved from IEEE 802.15.4 wireless standard and supported by the ZigBee Alliance.
IEEE 802.15.4 standard determines specifications for the physical and data link layer and Zigbee Alliance provides standards from network layer to application layer. While Zigbee determines the contents of the transmitted message, the 802.15.4 standard provides details about the robust radio communication and medium access control.
The Zigbee Alliance, as a non-profit association, develops open global Zigbee standard for use in the Internet of Things...
I get accused of focusing too much on 5G as the only future IoT connectivity option. I do write a lot about how 5G will revolutionize our society, become the most critical of critical infrastructures and about security threats with 5G. I see 5G, with its low latency, high bandwidth, network slicing and ubiquitous coverage becoming the foundational capability for mission critical industrial, agricultural, financial, medical, education, energy and transportation, even military and emergency services IoT communication needs.
That’s not to say that 5G is the only IoT connectivity option. There are plenty of others.
IoT applications have some common requirements...
In 1956, at a workshop on the campus of Dartmouth College, in Hanover, New Hampshire, the field of artificial intelligence (AI) was born. Attendants were buoyant. MIT cognitive scientist Marvin Minsky was quoted as saying, "Within a generation the problem of creating 'artificial intelligence' will substantially be solved."
This prediction turned out to be over zealous, but Minsky and his colleagues believed it wholeheartedly. What, then, is different today? What makes the current dialogue about AI more relevant and believable? How do we know that this is not another case of humans over estimating the development of technology?
For one thing,...
Not even 30 years separate us from the end of the Cold War. Yet, we appear to be witnessing the emergence of a new one, a technology Cold War between the United States and China. This time, instead of a ‘red under the bed’, the US government has declared there is one at the back door. It accuses Chinese technology companies of deliberately building vulnerabilities into their tech, allowing the Chinese to access and control the 5G critical infrastructure, and through it the connected devices and machinery at will.
Headlines are dominated by the case against Huawei, and debate continues...
Emerging Technology and Geopolitics of 5G
There are several reasons emerging technology is a highly competitive industry, notwithstanding the race for intellectual property that can be licensed by burgeoning markets for revenue. A first-mover advantage is often a way to lock in relationships that can lead to long-term infrastructure commitments, integration support services, and service delivery platform development. As the adage goes, “Whoever owns the platform, owns the customer.” This race to be the first to establish technological platforms and lock-in their customers is increasingly becoming politicized. And 5G, the next generation of cellular mobile communications technology, is the best...
Hyped as the technology that will transform the world, 5G is moving past the buzzword stage with first implementations coming to life in 2019. Nations are racing to 5G with such fervor that it now became one of the hottest hot-button geopolitical issues.
With latency as low as 1 ms and speeds of up to 4 Gbps, as well as a wider range of frequency bands and enhanced capacity, 5G will be able to accommodate innovative use cases and much greater numbers of connected devices, driving overall growth for Internet of Things (IoT).
In addition to the speed and capacity improvements,...
Don’t let the “5G” in the title confuse you. This post is not only about the telcos’ core networks, but about the 5G security and privacy issues in our (very) near, and very different future that 5G will enable. In the 5G-enabled massive Internet of Things (mIoT) world we’re about to find ourselves in, we are expected to have 1000 devices connected for every person… These devices will be the components of the ‘5G operating system’ for our smart cities, our industry 4.0, our smart homes, smart transportation, smart healthcare, and much more. To enable this future, we will...
More than half of the world’s population lives in cities. The UN estimates that by 2050 that proportion will be 68% - more than 6 billion people living in high-density conditions. This raises significant challenges. What is the best way to ensure that human needs are met in a fair and equitable way? How will we face challenges like resource strain, waste and pollution management, traffic congestion and connectivity?
In response to these wicked problems, cities are increasingly relying on smart technologies to foster greater efficiency and sustainable growth. These interventions do not, however, come without their own complications. Just...
Since the dawn of the 21st Century, the ways in which people and organizations that use the Internet experience, perceive and act in the world is radically changing. We interact with physical objects and systems well beyond our sight and comprehension. Our cars, homes, factories and public transportation are controlled increasingly by computer chips and sensors. This interconnectedness already exceeds much of last century’s science fiction imaginings, but is poised to accelerate even more dramatically with the advent of 5G.
Popular telecom carrier driven expectations about the speed and capacity of 5G consumer mobile service tend to obscure the broader...
Getting smart about security in smart systems
Smart used to be something we called people or pets. It wasn't a term one would use to describe one's hairbrush. That is changing, of course, in an era of accelerating digital transformation. Now we have smart homes, smart cities, smart grids, smart refrigerators and, yes, even smart hairbrushes. What's not so smart, though, is the way the cybersecurity and cyber-kinetic security risks of these systems are often overlooked, and with new horizon technologies like 5G, these problems are set to grow exponentially.
Cyber-physical systems and the smartification of our world
Cyber-connected objects have become...
Cybersecuring railway systems from potential attackers must become paramount in the digitization that those systems currently undergo. Their cybersecurity is too closely interlinked with the railway safety to leave the door open to disruption. To make matters worse, they are increasingly being targeted.
Railway systems have long been critical. Mass transit systems move hundreds of thousands of people throughout urban areas each work day. Freight systems move an estimated 40 tons of freight for every person in the U.S. every year. Imagine the chaos if they were disrupted.
These systems have always been challenging to secure. Even urban mass transit systems...
The human brain is programmed to keep us safe and secure. Yes, we are separated from the rest of the animal kingdom by our advanced capacities of sense-making and decision-making, but at the core of our grey matter remains some primitive but powerful tech tasked with keeping us alive. If your amygdala senses danger, it makes a split second decision and triggers the fight-or-flight response, flooding your body with hormones like adrenaline that prepare you for battle. This overrides the cortex – the sophisticated part of the brain we rely on for problem-solving and strategic thinking – making it...
As IoT adoption continues to proliferate, manufactures and adopters are increasingly aware of cybersecurity risks to IoT. Yet, even among the IoT security professionals, one significant potential remote attack vector is often overlooked: intentional electromagnetic interference (IEMI).
Electromagnetic interference (EMI) surrounds us – natural causes, such as solar flares and lightning; and man-made sources such as radio and TV broadcasting, radars, microwaves and many others all emit electromagnetic waves that could disrupt operation of electrical and electronic devices. That is, if devices wouldn’t comply with numerous electromagnetic compatibility (EMC) standards which ensure correct operation in common electromagnetic environment and resilience...
Targeted cyberattacks against critical infrastructure (CI) are increasing on a global scale. Critical systems are rapidly being connected to the internet, affording attackers opportunities to target virtual systems that operate and monitor physical structures and physical processes through various modes of cyberattack.
When people think of cyberattacks, their minds often go first to the financial sector. After all, that’s the type of attack people hear about most frequently; it’s where the money is and it’s what seems most natural for cybercriminals to target. Enterprises frequently focus on such cyber-enabled financial crimes to the point that they give too little thought...